Elgersburg Lectures — March 2010

Lecture V

ENERGY FLOW In SYSTEMS
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Motivation

KVL, KCL, IUM, and KFL
Building blocks

Energy transfer

Ports

Circuit synthesis

The inerter

Motion energy
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How Iis energy transferred from the environment to a
system?

How is energy transferred between systems?
Are energy transfer and interconnection related?

How are passive systems synthesized?
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Open system:s

Environment

Systems are ‘open’, they interact with their environment.

How Is energy transferred from the environment to a system?
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Interacting systems

System 1 Environment

Environment

i
/

Interconnected systems interact.

How Is energy transferred between systems?

Are energy transfer and interconnection related?
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Systems with terminals
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Electrical circuit

terminals

Electrical
circuit

K

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),

~ behavior # C (RN x RN)R.

(Vl,Vz, NGy ||\|) c % means:.
this potential/current trajectory is compatible with
the circuit architecture and its element values.
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Electrical circuit

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),

~ behavior # C (RN x RN)R.

(Vl,Vz, VNG, ||\|) c % means:.
this potential/current trajectory is compatible with
the circuit architecture and its element values.

Early sources:

Brockway McMillan Robert Newcomb
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KVL and KCL

terminals

Electrical
circuit

K

Kirchhoff’s voltage law (KVL):

[[(Vl,Vz,...,VN,|1,|2,...,||\|) et%f’anda:IRi—ﬂR{]]
= VMi+a,Vo+a,....W+a,l,lo,....IN) € B .

Equivalently, the behavioral equations contain theVi’s only
through the potential differencesV, —V;.
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KVL and KCL

terminals

Electrical
circuit

K

Kirchhoff’s voltage law (KVL):

[[(Vl,Vz,...,VN,|1,|2,...,||\|) et%f’anda:IR{—ﬂR{]]
= VMi+a,Vo+a,....W+a,l,lo,....IN) € B .

Kirchhoff’s current law (KCL):
[[(V17V27°"7VN7|17|27'°'7|N) S %]] = [[ |1‘|‘|2—|——|—|N — O]]
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Circuit properties

An N-terminal circuit is said to be
» [linear ] :< [% C (RN x RN)R is linear |

[ time-invariant | ;< [0'% = £, with ¢! the t-shift |

» [ alinear time-invariant differential system (LTIDS) |
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Circuit properties

An N-terminal circuit is said to be
» [linear ] :< [% C (RN x IR{N)R is linear |

[ time-invariant | ;< [0'% = £, with ¢! the t-shift |

» [ alinear time-invariant differential system (LTIDS) |

» [reciprocal | < [--]

» [ passive] <[]
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Mechanical device

At each terminal: a position and a force.
~+ position/force trajectories (q,F) € £ C ((R*)2N)E.

More generally, a position , force , angle , and torque.
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Mechanical properties

% satisfiesinvariance under uniform motion (IlUM) <

(q17q27'°'7q|\|7 F17F27°°-7FN) c %’and
vite R— (a+bt) € R* imply

(L +V, o+ V,...,.On+V, Fr,Fo,... . FN) € B

~» other symmetries (rotation, Euclidean group), etc.
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Mechanical properties

% satisfiesinvariance under uniform motion (IlUM) <

(q17q27'°'7q|\|7 F17F27°°-7FN) c %’and
vite R— (a+bt) € R* imply

(L +V, o+ V,...,.On+V, Fr,Fo,... . FN) € B
~» other symmetries (rotation, Euclidean group), etc.

% satisfie:Kirchhoff’s force law (KFL) <

[[(quqZ,---,qN,F]_,FZ,--.,FN) S %]]

=[FR+R+ - +R=0]

KFL is, contrary to [lUM, not a universal law.
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2-terminal behavior

Consider a2-terminal circuit.
Assume that KVVL and KCL hold.

~» variables:
voltageV =V, — V5 across

current | =1, = —I5 into the circuit along terminal 1.

Electrical Electrical
circuit circuit
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Building blocks




2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits

V =the voltage
| = the current,
Q =the charge
® = the flux.
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits
V I

resistor

V =the voltage
| = the current, _ _
capacitor inductor
Q =the charge
® — the flux.
/ memristor \

Q ()

These variables are connected by laws and devices.
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits

V , I
resistor
V = the voltage
| = the current, _ _
capacitor inductor
Q =the charge
® — the flux.
/ memristor \

Q ()

The current is the time-derivative of the electrical charge

d

dt
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits

V , I
resistor
V = the voltage
| = the current, _ _
capacitor inductor
Q =the charge
® = the flux.
/ memristor \
Q O
The voltage is the time-derivative of the magnetic flux:
d
— P =V
dt

(law of Faraday-Lenz)

Michael Faraday Heinri(;h Lenz
1791-1867 1804-1865
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits
V I

resistor

V =the voltage
| = the current, _ _
capacitor inductor
Q =the charge
® — the flux.
/ memristor \‘

Q P
Devices that relate the current and the voltagel andV,
R(l,V) =0, are called resistors. For example,

A

/ 1
/ T V=0A1>0}V{V >0Al =0}
(Ohmic resistor) (Ideal diode)

+ A

\Y

-V
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits

V =the voltage
| = the current,
Q =the charge
® = the flux.

V

capacitor

resistor

/

Q

memristor

Devices that relate the voltage and the electrical charge,
V and Q, C(V,Q) =0, are called capacitors. For example,

1

\+
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits

V = the voltage
| = the current,
Q =the charge
® = the flux.

V

capacitor

resistor

/

Q

memristor \‘

Devices that relate the current and the magnetic flux| and @,
L(I,®) =0, are called inductors. For example,
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits
V I

resistor

V =the voltage
| = the current, _ _
capacitor inductor
Q =the charge
® — the flux.
/ memristor \‘

Q ()

Resistors, capacitors, and inductors are the classical
2-terminal circuit elements.

Are there devices that relateQ and ®?
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The missing element: the memristol

Devices that relate the electrical charge and the magneticuk,
Qand ®, M(Q,®) =0, are called memristors .

-

+
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The missing element: the memristol

Devices that relate the electrical charge and the magneticuk,
Qand ®, M(Q,®) =0, are called memristors .

P

The existence of this device
was postulated by Chua in 1971.
In 2009, it was manufactured by HP. Leon Chua (1936— )
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The missing element: the memristol

Devices that relate the electrical charge and the magneticuk,
Qand ®, M(Q,®) =0, are called memristors .

-

+

a charge-controlled resistor.
Q=M(Q) ~ 1=GQV, G=M"

a flux-controlled resistor.

" denotes derivative.
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Terminal behavior
|

2-terminal device

resistor RV,I)= 0,

capacitor C(V,Q) = 0, % =1,

iInductor L(l,®)= 0, %CD:V,

memristor M(Q,®)= 0 d = | ECIJ—V
S T dt s 7 dt

Q and @ are latent variables that cannot be eliminated in the
nonlinear case.
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Terminal behavior
|

2-terminal device

Linear case: resistor V=R, or | =0Gl,
d
capacitor C—V =
p dt 9
. d
Inductor L—I =V,
dt
memristor V=R, or | =Gl.

Note that a linear memristor is a resistor.
It Is a device that is useful only in the nonlinear case.
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The classical electrical element
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Linear 2-terminal circuit elements

Resistor

V1—Vo=Rl4 l1+1,=0
R = ‘resistance’

Satisfies KVL and KCL.
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Linear 2-terminal circuit elements

Capacitor

CE (M1 —Vo) =11 l1+1>=0
C = ‘capacitance’

Satisfies KVL and KCL.

—n. 18/77



Linear 2-terminal circuit elements

Inductor

L =Vi—Vo I3 +1,=0
L = ‘iInductance’

Satisfies KVL and KCL.
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Examples of 4-terminal circuit elements

Transformer

\NAAEAANLS

(YY)
WAAAMAAAAAAAAAAL

V1—V2:n(V3—V4),—nI1:I3 l1+1>=0,I34+1,=0

n = ‘turns ratio’

Satisfies KVL and KCL.
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Examples of 4-terminal circuit elements

Gyrator

Vi—Vo =0ql3,V3 -V = —ql1 l1+1>o=0,I3+14=0

g = ‘gyrator resistance’

Satisfies KVL and KCL.

—n. 19/77



Example of a 3-terminal circuit element

pnp transistor

collector

base

emitter

|e: fe(Ve_VbaVc_Vb)alc: fC(Ve_Vba\/C_Vb)a |e‘|'|c‘|‘|b: 0.

Satisfies KVL and KCL.
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Example of an n-terminal circuit element

Connector
1
— 2
N
Vi=Vo=---=V,, i +1lo+---+1,=0.

Satisfies KVL and KCL.
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Linear mechanical building blocks

Spring

i
i

Aéo&&é&

QWQ ;

FF+FH=0, K(gqo—q)=F IJUM and KFL

—n. 22/7



Linear mechanical building blocks

Damper
F )
; ®
h
d
Fi1+FR =0, D—(g1—0q2) =F. IJUM and KFL

dt
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Linear mechanical building blocks

Mass

FORCE

M—q=F. IUM, but not KFL
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Interconnection
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Connection of circult terminals

Interconnection = connecting terminals, like soldering wies

together.

Electrical
circuit

Connecting terminalsN — 1 and N leads to
W-1=W, In-1+IN=0.

After interconnection the terminals share the variables
Wn-1,Wn, and In_1,INn (Up to a sign).
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Connection of circult terminals

Electrical
circuit

Electrical
circuit

Connecting terminalsN — 1 and N leads to
W-1=W, INn-1+In=0.
The interconnected circuit hasN — 2 terminals. Its behavior =

B = {(V1,11,Vo, 12, ... VN_2,In_2) : R —» RZN=2)| 3/ |
such that (Vi, 11, Vo, 12, ... . Wn_2,IN—2, V, IV, —I ) S 93}

—n. 26/7



Preservation of properties under interconnection

| % satisfiesKVL | = [so does#'|
[ % satisfies KCL | = [so does#']

(% linear | = [%#' linear |

vvy V¢V ¥V

An interconnection of resistors, inductors, capacitors,
connectors, transformers, gyrators, transistors, etc. haa
terminal behavior that satisfies KVL and KCL.
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Connection of mechanical terminals

Interconnection = connecting terminals, like screwing pirs
together.

Connecting terminalsN — 1 and N leads to

ON-1=0Nn, N1+ =0.

After interconnection the terminals share the variables
On-1,0N, and Fy—1, Ay (up to a sign).
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Connection of mechanical terminals

Mechanical
device
[ )

Connecting terminalsN — 1 and N leads to
Ono1=0ONn, Fno1+Fe=0.
The Iinterconnected circuit hasN — 2 terminals. Its behavior =

A = {(01,F1,02,F2,...,0n-2,Fn-2) : R — RZN=2)| 3 g F
such that (g1, F1, 02, F2,...,0n—2,FN—2, O,F,q,—F ) € #}.
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Preservation of properties under interconnection

| % satisfies [IUM | = [so does#'|
[ % satisfies KVL | = [so does#']

(% linear | = [#' linear |

v vy VvV YV

An interconnection of springs, dampers, and masses satisfie
IUM.
An interconnection of springs and dampers satisfies KFL.
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Energy transfer

—n. 30/7



Energy := a physical guantity transformable into heat.
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Energy := a physical guantity transformable into heat.

For example capacitor— resistor — heat.

Energy on capacitor =3CV? %
|
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Energy as an extensive quantity

Our intuition has been built to think of energy as an
extensive quantity, meaning that it is additive

Etotal — El + EZ-
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Energy as an extensive quantity

Our intuition has been built to think of energy as an
extensive quantity,

System 1 Environment

Environment

that flows in and out and between systems
along the interconnected interfaces (terminals).
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Energy as an extensive quantity

Our intuition has been built to think of energy as an extensie
guantity, that flows in and out and between systems along the
Interconnected terminals).

Some methodologies for modeling interconnected systems,
as bond-graph modeling and port-Hamiltonian systems,
are based on this thinking.

Henry Paynter Arjan van der Schaft
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Energy as an extensive quantity

Our intuition has been built to think of energy as an extensie
guantity, that flows in and out and between systems along the
Interconnected terminals).

‘Power Is the universal currency of physical systems’

‘In physical systems, the interaction between subsystems
IS always related to an exchange of energy’

P.J. Gawthrop and G.P. BevanBond-graph modeling
IEEE Control Systems Magazine, vol. 27, pp. 2445, 2007.
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Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and
energy in the form of heat are extensive quantities.
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Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and
energy in the form of heat are extensive quantities.

However, energy is more subtle for other forms.

Motion (kinetic) energy is not additive.

Same with energy due to gravitational attraction,
due Coulomb forces, etc.

Heat is a special, extensive, form of energy.

Energy and power are not a ‘local’ quantities.
They involve ‘action at a distance’.
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Ports
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Terminals {1,2,...,p} forma port <
(Vl,...,Vp,Vp_|_1,...,VN,|1,...,|p,|p_|_1,...,||\|)E@

= li+---+1p=0. ‘port KCL'.

(KVL &) KCL = all terminals together form a port.
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If terminals {1,2,...,p} form a port, then

power in along these terminals =V;(t)l1(t) + - - - +Vp(t)Ip(t),

to

energy in = / (VL(O)11(t) + -+ V(D) (1)) dt.

t

This interpretation in terms of power and energy is not valid
unless these terminals form a port!
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Dissipation into heat

Justification:

Shows transformation
of power into heat.

Requires port KCL!

—

unit transformer

unit transformer

-

[

)

<
N

i)
e

N

Yy

Vp—1

Yy |
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2-terminal 1-port devices

resistors, inductors, capacitors, transistors, memristos,
gyrators, connectors, etc.
any 2-terminal circuit composed of these.

l1

Electrical Electrical
circuit circuit
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3-terminal 1-port devices

transistors, Y'’s, A's.

|
ol
\
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4-terminal 2-port devices

Transformers, gyrators.

= S
<l (S
<1 T
<] LS
<1 T
<] LS
<1 T
<] I
<] (S
<] [
<l (S
<1 T
<] LS
<1 T
S >

Vi—Vo=n(Va—Vs),—nly =13 1 +12=0,I3+14=0
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AV 3

(T, (T,
2 | | 4

Terminals {1,2,3,4} form a port. But {1,2} and {3,4} do not.
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% % v
2 | |
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[ 1

MAMAARA
TIVYTYY

A
J L WA A AR

£

Terminals {1,2} and {3,4} form a port.
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Are ports common?

X
Ny
V7 @

/

Theorem: Consider an electrical circuit consisting of an
Interconnection of (linear passive) R’s, L's, and C’s. If eery
pair of terminals of the circuit graph is connected, then

the only port is the one that consists of all the terminals.
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Are ports common?

Corollary : Consider an electrical circuit consisting of an

Interconnection of (linear passive) 2-terminal 1-port
Impedances. If every pair of terminals of the circuit graph is
connected, then

the only port is the one that consists of all the terminals.
Follows from the theorem, combined with Bott-Duffin (every

positive real impedance can be viewed as an RLC circuit).In

order to have non-trivial ports, we need
2-port building blocks like transformers in the circuit.
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Independence

(Vl,...,Vp,Vp_l_l,...,VN,|1,...,|p,|p_|_1,...,||\|)E@,GZRHR
= (Vl—l—G,...,Vp—l—G,Vp+1,...,VN,|1,...,|p,|p+1,...,||\|) cA.

‘port KVLL For

linear passive circuits, there holds

port KVL & port KCL .

For energy: port KCL li+1lp+---+1p=0.
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Electrical circuit synthesis
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Electrical
circuit

Assume that the circuit consists of an interconnection cedin
building blocks, say positiveR’s, L's,C’s, T's, G's, etc., or
combinations of these,

which external behaviors can occur ?

This was the prime theoretical electrical engineering qudsn
until 1960.
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Electrical
circuit

LTIDS case~» relation betweenV and |

d(&)V=n(3)l ndecR[E].

Which polynomial pairs (n,d) can occur?
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Positive realness

: n
Introduce the ‘impedance’ Z:.= 3
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Positive realness

Theorem: The following are equivalent

» Zisrealizable using (positive, linear) R, L, & C’s
and transformers.

» ZIs ‘positive real’,

l.e.,[Real (A) > 0] = [Real (Z(A)) > 0].
» [P V(t)I(t)dt >0 Vcompactly supported(V,l) € &,
>

Otto Brune
1901-1982

—n. 49/7



Positive realness

In 1949 Raoul Bott and Richard Duffin in a joint paper
dramatically improved Brune’s 1931 result.
Theorem: The following are equivalent

» Zisrealizable using (positive, linear) R, L, & C’s
without transformers.

» Z IS positive real,
>

Raoul Bott
1923-2005
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Positive realness

In 1949 Raoul Bott and Richard Duffin in a joint paper
dramatically improved Brune’s 1931 result.
Theorem: The following are equivalent

» Zisrealizable using (positive, linear) R, L, & C’s
without transformers.

» Z IS positive real,
>

Caveat the nand d obtained in the
Bott-Duffin synthesis are NOT coprime!
~» uncontrollable (V,I)-behavior.

) ) Raoul Bott
~» correct impedance, perhaps incorrect ODE. 1923-2005
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Mechanical ports
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The behavior

At each terminal: a position and a force .
~+ position/force trajectories (q,F) € Z C ((R*)2N)E.
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The behavior

At each terminal: a position and a force .
~+ position/force trajectories (q,F) € Z C ((R*)2N)E.

What is the analogue of a port?
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Terminals {1,2,..., p} form a (mechanical) port <

(q17°"7qp7qp—|—17"'7qN7F17'"7Fp7Fp-|—17"'7FN) 6%7
- Fk+kR+---+F=0. ‘port KFL
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Power and energy

If terminals {1,2,...,p} form a port, then

powerin = Fy(t) " Sau(t) +- -+ Fp(t) T Sap(t),
and

52

energyin — [ (R0 G+ + Rt Gault)) k.

t

This interpretation in terms of power and energy is not valid
unless these terminals form a port!
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Spring

i
i

Afoé&&&

'W' ;

FF+FH=0, K(gqo—q)=F IJUM and KFL
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Damper
F )
i 02
h
d
F+F =0, Da(ql—(h) = F. IUM and KFL

Springs and dampers, and the interconnection of springs and
dampers form ports.
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Mass

FORCE

M—qg=F. UM but not KFL
d2|

Not a port!!!
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Conseguence:

We discuss 2 consequences of the fact that a mass is not a port.

1. The inerter
2. Kinetic energy
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Mechanical synthesis
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Electrical and mechanical synthesi:

What mechanical impedances are realizable using passive
mechanical devices (dampers, springs, and masses)?

Is it possible to use RLC synthesis to obtain mechanical
synthesis?
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Electrical and mechanical synthesis

- forceF

—

position g

Relationship betweenF and g

d d .
d <a> g=n (&) F n,d real polynomials.

n(¢)

Z(&)=&——= positive real ??77?

d(<)

Naive! The mass is NOT the mechanical analogue of a
capacitor.
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Electrical-mechanical analogies

voltage V < v velocity

current | — F force

Resistor Damper
F%(V]-_VZ)ZIJJ |1_|_|2:O D(V]_—Vz):l:]_7 F1_|_F2:O
Inductor Spring
d d
%(Vl_vz):alla |1+|2:O I((V:]_—Vz):alzl7 F1_|_F2:O
Capacitor Mass
d d
C—V1—Vo)=11. I1+1o=0 M—v—=F
dt( 1 2) 1, l1+12 pm
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Electrical-mechanical analogies

voltage V < v velocity current | < F force
Resistor Damper
ZVi—Vo) =11, l1+12=0 | D(vi—Vo)=F1, Fi+FH=0
Inductor Spring
d d
t(Vi=Vo) = 2l1, i+l =0 | K(vi—Vo) = =F1, Fi+F=0
Capacitor Mass
d d
C—V1i—Vo)=11, I1+12=0 M—v=F
dt( 1—V2) =11, I1+12 at

The electrical analogue of a mass is a ‘grounded’ capacitor.

Electrical synthesis = mechanical synthesis.
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F1
<——
g
goar  flywheel termingl 01

BgTzz(ql—qz):Fl, FI+F =0 IUM and KFL

Malcolm Smith
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Electrical-mechanical analogies

voltage V < v velocity

current | —< F force

Resistor Damper
1
ﬁ(Vl—Vz):H, i +12=0 Divi—w)=F, Fi+F=0
Inductor Spring
1 d d
E(Vl—Vz):all, l14+12=0 K(Vl—VZ):aFl, FT+F =0
Capacitor Inerter

d
Ca(vl—VZ) =11, I1+12=0

B—(vi—v2)=F, R+F=0

d

dt

electrical RLC synthesis < mechanical SDI synthesis

Springs, dampers, inerters, and their interconnections

form ports!
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The inerter iIn Formula 1

inerter

Kimi R ailkkonen wins the 2005 Grand Prix in Spain with
MclLaren’s ‘J-damper’, i.e., Smith’s inerter.
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qgran aDI'I;\'. CoY77

AUGUST 21, 2008

Ingenuity still brings success in
Formula 1

ShareThis

For years engineers have complained that the rules of Formula 1 mean that there is
little room left for innovation but Cambridge University's engineering department has
just revealed that this is not the case at all.

Professor Malcolm Smith, a fellow of Gonville and Caius College, created an
innovative suspension system in the late 1990s and this was patented by the
university. The first details were published in 2002 in the obscure Institute of
Electrical and Electronics Engineers's publication called Transactions on Automatic
Control. This was spotted by the boffins at McLaren and an exclusive deal was
negotiated to allow the team to use the technology in F1. The new system was first
used at the Spanish GP in 2005 and Kimi Raikkonen won.

The team used the name "] Damper" to describe the unit - in an effort to confuse the
opposition - but it has now been revealed that it is actually called "an inerter”. This is
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qgran a,DI'I;\'. CoY77

AUGUST 21, 2008

Ingenuity still brings success in
Formula 1

ShareThis
For years engineers have complained that the rules of Formula 1 mean that there is
little room left for innovation but Cambridge University's engineering department has
just revealed that this is not the case at all.

Frc-fessur Malcﬂlm Smith, a fE:ﬂGW of Gonville and Cmus Cnllegﬁ created an

unwers:t}' The first detmis were pubhs.hm:l in Eﬂ{]? in the obscure IIIEIIH.IT.E of

Electrical and Electronics Engineers's publication called Transactions on Automatic
Control. This was spotted by the boffins at McLaren and an exclusive deal was
negotiated he team fo use the technology in F1. The new system was
used at the Spanish GP in 2005 and Kimi Raikkonen won.

The team used the name "] Damper" to describe the unit - in an effort to confuse the
opposition - but it has now been revealed that it is actually called "an inerter”. This is
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MOTION ENERGY




FORCE

d
oMl CIHZ R

SinceF 'vis not power,

.1 o .
IS éM |\aq| 2 not stored (kinetic, motion) energy 2??
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Kinetic energy and invariance under uniform motions

M

‘IIIIIIIIIIIIII»
V

What is the kinetic energy?
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Kinetic energy and invariance under uniform motions

M

‘IIIIIIIIIIIIII»
V

What is the kinetic energy?

1
@@kinetic — é M HVHZ

Willem ’s Gravesande Emilie du Chatelet
1688-1742 1706-1749

This expression is not invariant under uniform motion.
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Motion energy

M

What is the motion energy?

What quantity is transformable into heat?
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Motion energy

M

What is the motion energy?

What quantity is transformable into heat?

1 M; My

SEmotion = é M1+ M, HVl_VZHZ

Invariant under uniform motion.
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Dissipation into heat

Can be justified (see Exercise V.3) by mounting a damper or a
spring between the masses.

Vi Ml /\MZ v,
%f{
1 M Mo
— V1 —V
> M1 M V1 — V2|

IS the heat dissipated in the damper.
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Motion energy

Generalization toN masses.

1 M; M;

Emotion = 1A% _VJ'HZ-
4i,j€{1,2,...,N} Mi+Mz+---+Mn
d :
KFL = agmotion = Z v

1€{1,2,...,N}
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Motion energy

Motion energy is not an extensive quantity, it is not additie.

Total motion energy = sum of the parts.
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Motion energy

1 M; M;

Vi =i,
Liefz.. ny M1+ Mz -+ My

gmotion —

B |

Distinct from the classical expression of the kinetic energ

1
Skinetic = é Z M; HViHZ'

1€{1,2,...,N}
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Motion energy

Reconciliation: My, 1 = o, Fyy1 = — (Fi+Fo+ -+ ),

—(R+R+-+FR)

measure velocities w.r.t. this infinite mass (‘ground’), tlken

1 Mi M; ,
4 Z M1+ Mo+ -+ My + M [[Vi — Vil
i,jE{l,Z,...,N,N+1} 1 2 N N-+1
L 2
7 5 ) M~

1€{1,2,...,N}
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PORTS and TERMINALS




Energy transfer

One cannot speak about

“the energy transferred from circuit 1 to circuit 2~
or “from the environment to circuit 17,

unless the relevant terminals form a port.

Analogously for mechanical systems, etc.
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Recapitulation
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» Energy transfer happens via ports,
hence it involves action at a distance.

» Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’.
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Energy transfer happens via ports,
hence it involves action at a distance.

Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’.

Electrical ports < port KCL.
Mechanical ports ;< port KFL.
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\ 4

Energy transfer happens via ports,
hence it involves action at a distance.

Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’.

Electrical ports < port KCL.
Mechanical ports ;< port KFL.

The mass is not the mechanical analogue of the capacitor.
= the inerter.
= a hew expression for motion energy.
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\ 4

>

Energy transfer happens via ports,
hence it involves action at a distance.

Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’

Electrical ports < port KCL.
Mechanical ports ;< port KFL.

The mass is not the mechanical analogue of the capacitor.

= the inerter.
= a new expression for motion energy.

Terminals are for interconnection,
ports are for energy transfer.
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End of Lecture V




Reference: The behavioral approach to open and interconnéed
systems Control Systems Magazineolume 27, pages 46-99, 2007.

This paper is available from/at

Jan. Wl |l enms@sat . kul euven. be
http://ww. esat. kul euven. be/ ~jw | | ens

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you

Thank you

Thank you
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Postscript

The behavioral approach to modeling physical and
Interconnected systems has yet to find its influence in teaaiy
and research.
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Postscript

The behavioral approach to modeling physical and
Interconnected systems has yet to find its influence in teaaiy
and research.

lk zal de halmen niet meer zien
Noch binden ooit de volle schoven,
Maar doe mij in den oogst geloven
Waarvoor ik dien

A. Roland Holst, De ploeger

Adriaan Roland Holst
1888-1976
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