
Elgersburg Lectures – March 2010

Lecture V

ENERGY FLOW in SYSTEMS
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Outline

◮ Motivation

◮ KVL, KCL, IUM, and KFL

◮ Building blocks

◮ Energy transfer

◮ Ports

◮ Circuit synthesis

◮ The inerter

◮ Motion energy
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Theme

◮ How is energy transferred from the environment to a
system?

◮ How is energy transferred between systems?

◮ Are energy transfer and interconnection related?

◮ How are passive systems synthesized?
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Open systems

System Environment

Systems are ‘open’, they interact with their environment.

How is energy transferred from the environment to a system?
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Interacting systems

EnvironmentSystem 1
System 2

Environment

Interconnected systems interact.

How is energy transferred between systems?

Are energy transfer and interconnection related?
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Systems with terminals
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Electrical circuit

circuitcircuit
Electrical Electrical

terminals
1

2N

k

I1 I2
IN

Ik

V1

V2
VN

Vk

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),

; behavior B ⊆
(
R

N ×R
N
)R

.

(V1,V2, . . . ,VN , I1, I2, . . . , IN) ∈ B means:
this potential/current trajectory is compatible with
the circuit architecture and its element values.
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Electrical circuit

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),

; behavior B ⊆
(
R

N ×R
N
)R

.

(V1,V2, . . . ,VN , I1, I2, . . . , IN) ∈ B means:
this potential/current trajectory is compatible with
the circuit architecture and its element values.

Early sources:

Brockway McMillan Robert Newcomb
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KVL and KCL

circuitcircuit
Electrical Electrical

terminals
1

2N

k

I1 I2
IN

Ik

V1

V2
VN

Vk

Kirchhoff’s voltage law (KVL):

[[(V1,V2, . . . ,VN , I1, I2, . . . , IN) ∈ B and α : R → R ]]

⇒ [[ (V1 +α ,V2 +α , . . . ,VN +α , I1, I2, . . . , IN) ∈ B ]].

Equivalently, the behavioral equations contain theVi’s only
through the potential differencesVi −Vj.
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KVL and KCL

circuitcircuit
Electrical Electrical

terminals
1

2N

k

I1 I2
IN

Ik

V1

V2
VN

Vk

Kirchhoff’s voltage law (KVL):

[[(V1,V2, . . . ,VN , I1, I2, . . . , IN) ∈ B and α : R → R ]]

⇒ [[ (V1 +α ,V2 +α , . . . ,VN +α , I1, I2, . . . , IN) ∈ B ]].

Kirchhoff’s current law (KCL):

[[(V1,V2, . . . ,VN , I1, I2, . . . , IN) ∈ B]] ⇒ [[ I1 + I2 + · · ·+ IN = 0 ]].
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Circuit properties

An N-terminal circuit is said to be

◮ [[ linear ]] :⇔ [[B ⊆
(
R

N ×R
N
)R is linear ]]

◮ [[ time-invariant ]] :⇔ [[σ tB = B, with σ t the t-shift ]]

◮ [[ a linear time-invariant differential system (LTIDS) ]]

:⇔ [[· · ·]]
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Circuit properties

An N-terminal circuit is said to be

◮ [[ linear ]] :⇔ [[B ⊆
(
R

N ×R
N
)R is linear ]]

◮ [[ time-invariant ]] :⇔ [[σ tB = B, with σ t the t-shift ]]

◮ [[ a linear time-invariant differential system (LTIDS) ]]

:⇔ [[· · ·]]

◮ [[ reciprocal ]] ⇔ [[· · ·]]

◮ [[ passive]] :⇔ [[· · ·]]

◮ · · ·
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Mechanical device

Mechanical
system

Mechanical
system

pins
1

2N

k

F1

F2
FN

Fk

q1 q2qN

qk

At each terminal: a position and a force.

; position/force trajectories (q,F) ∈ B ⊆ ((R•)2N)R.

More generally, a position , force , angle , and torque.
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Mechanical properties

B satisfiesinvariance under uniform motion (IUM) :⇔
(q1,q2, . . . ,qN, F1,F2, . . . ,FN) ∈ B and
v : t ∈ R 7→ (a+bt) ∈ R

• imply
(q1 + v, q2 + v, . . . ,qN + v,F1,F2, . . . ,FN) ∈ B.

; other symmetries (rotation, Euclidean group), etc.
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Mechanical properties

B satisfiesinvariance under uniform motion (IUM) :⇔
(q1,q2, . . . ,qN, F1,F2, . . . ,FN) ∈ B and
v : t ∈ R 7→ (a+bt) ∈ R

• imply
(q1 + v, q2 + v, . . . ,qN + v,F1,F2, . . . ,FN) ∈ B.

; other symmetries (rotation, Euclidean group), etc.

B satisfiesKirchhoff’s force law (KFL) :⇔

[[(q1,q2, . . . ,qN ,F1,F2, . . . ,FN) ∈ B]]

⇒ [[ F1 +F2 + · · ·+FN = 0 ]].

KFL is, contrary to IUM, not a universal law.
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2-terminal behavior

Consider a2-terminal circuit.
Assume that KVL and KCL hold.

; variables:
voltageV = V1−V2 across
current I = I1 = −I2 into the circuit along terminal 1.

Electrical Electrical
circuit circuit

V1

I1

V

I

V2

I2

+

-

1

2
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Building blocks
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
memristor

capacitor inductor

 resistor

d
dt

d
dt

Φ

V I

Q

These variables are connected by laws and devices.
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
memristor

capacitor inductor

 resistor

d
dt

d
dt

Φ

V I

Q

The current is the time-derivative of the electrical charge:

d
dt

Q = I.
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
memristor

capacitor inductor

 resistor

d
dt

d
dt

Φ

V I

Q

The voltage is the time-derivative of the magnetic flux:

d
dt

Φ = V

(law of Faraday-Lenz)

Michael Faraday Heinrich Lenz
1791–1867 1804–1865
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
memristor

capacitor inductor

 resistor

d
dt

d
dt

Φ

V I

Q
Devices that relate the current and the voltage,I and V ,
R(I,V ) = 0 , are called resistors. For example,

+

– I

I
V

VR

V = RI (Ohmic resistor)

_

+
I

I

V

V

{V = 0∧ I ≥ 0}∨{V ≥ 0∧ I = 0}
(Ideal diode)
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
memristor

capacitor inductor

 resistor

d
dt

d
dt

Φ

V I

Q

Devices that relate the voltage and the electrical charge,
V and Q, C(V,Q) = 0, are called capacitors. For example,

+

–

I

VC Q = CV
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
memristor

capacitor inductor

 resistor

d
dt

d
dt

Φ

V I

Q

Devices that relate the current and the magnetic flux,I and Φ,
L(I,Φ) = 0, are called inductors. For example,

+

–

I

VL Φ = LI
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2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.

V = the voltage,

I = the current,

Q = the charge,

Φ = the flux.
memristor

capacitor inductor

 resistor

d
dt

d
dt

Φ

V I

Q

Resistors, capacitors, and inductors are the classical
2-terminal circuit elements.

Are there devices that relateQ and Φ?
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The missing element: the memristor

Devices that relate the electrical charge and the magnetic flux,
Q and Φ, M(Q,Φ) = 0, are called memristors .

+

–

I

VM
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The missing element: the memristor

Devices that relate the electrical charge and the magnetic flux,
Q and Φ, M(Q,Φ) = 0, are called memristors .

+

–

I

VM

The existence of this device
was postulated by Chua in 1971.
In 2009, it was manufactured by HP. Leon Chua (1936– )

– p. 15/77



The missing element: the memristor

Devices that relate the electrical charge and the magnetic flux,
Q and Φ, M(Q,Φ) = 0, are called memristors .

+

–

I

VM

Φ = M̂(Q) ; V = R(Q)I, R = M̂ ′,
a charge-controlled resistor.

Q =
̂̂M(Q) ; I = G(Q)V , G =

̂̂M ′,
a flux-controlled resistor.

′ denotes derivative.
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Terminal behavior

+

–

2-terminal device V

I

resistor R(V, I) = 0,

capacitor C(V,Q) = 0,
d
dt

Q = I,

inductor L(I,Φ) = 0,
d
dt

Φ = V,

memristor M(Q,Φ) = 0,
d
dt

Q = I,
d
dt

Φ =V.

Q and Φ are latent variables that cannot be eliminated in the
nonlinear case.
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Terminal behavior

+

–

2-terminal device V

I

Linear case: resistor V = RI, or I = GI,

capacitor C
d
dt

V = I,

inductor L
d
dt

I = V,

memristor V = RI, or I = GI.

Note that a linear memristor is a resistor.
It is a device that is useful only in the nonlinear case.

– p. 16/77



The classical electrical elements
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Linear 2-terminal circuit elements

Resistor

1

2

V1−V2 = RI1 I1 + I2 = 0

R = ‘resistance’

Satisfies KVL and KCL.
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Linear 2-terminal circuit elements

Capacitor

2

1

C d
dt (V1−V2) = I1 I1 + I2 = 0

C = ‘capacitance’

Satisfies KVL and KCL.
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Linear 2-terminal circuit elements

Inductor

1

2

L d
dt I1 = V1−V2 I1 + I2 = 0

L = ‘inductance’

Satisfies KVL and KCL.
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Examples of 4-terminal circuit elements

Transformer

1

2 4

3

V1−V2 = n(V3−V4) ,−nI1 = I3 I1 + I2 = 0, I3+ I4 = 0

n = ‘turns ratio’

Satisfies KVL and KCL.
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Examples of 4-terminal circuit elements

Gyrator

1

2

3

4

V1−V2 = gI3,V3−V4 = −gI1 I1 + I2 = 0, I3 + I4 = 0

g = ‘gyrator resistance’

Satisfies KVL and KCL.
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Example of a 3-terminal circuit element

pnp transistor

base

emitter

collector

Ie = fe(Ve −Vb,Vc −Vb), Ic = fc(Ve −Vb,Vc −Vb), Ie + Ic + Ib = 0.

Satisfies KVL and KCL.

– p. 20/77



Example of an n-terminal circuit element

Connector

1

2

n

V1 = V2 = · · · = Vn, I1 + I2+ · · ·+ In = 0.

Satisfies KVL and KCL.
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Linear mechanical building blocks

Spring

L

F1 F2

F1 +F2 = 0, K(q1−q2) = F1 IUM and KFL
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Linear mechanical building blocks

Damper

F1 F2

q1

q2

F1 +F2 = 0, D
d
dt

(q1−q2) = F1. IUM and KFL
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Linear mechanical building blocks

Mass

FORCE

q
MASS

M
d2

dt2q = F. IUM, but not KFL

– p. 24/77



Interconnection
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Connection of circuit terminals

Interconnection = connecting terminals, like soldering wires
together.

Electrical
circuit

Electrical
circuit

I1 I1
I2I2

IN−1

IN−2IN−2

IN

IkIk

I

−I
V

V

V1V1

V2V2

VN−1

VN−2VN−2

VN

VkVk

Connecting terminalsN −1 and N leads to

VN−1 = VN , IN−1 + IN = 0.

After interconnection the terminals share the variables
VN−1,VN , and IN−1, IN (up to a sign).
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Connection of circuit terminals

Electrical
circuit

Electrical
circuit

I1 I1
I2I2

IN−1

IN−2IN−2

IN

IkIk

I

−I
V

V

V1V1

V2V2

VN−1

VN−2VN−2

VN

VkVk

Connecting terminalsN −1 and N leads to

VN−1 = VN , IN−1 + IN = 0.

The interconnected circuit hasN −2 terminals. Its behavior =

B
′ = {(V1, I1,V2, I2, . . . ,VN−2, IN−2) : R → R

2(N−2)| ∃ V, I

such that (V1, I1,V2, I2, . . . ,VN−2, IN−2, V, I,V,−I ) ∈ B}.
– p. 26/77



Preservation of properties under interconnection

◮ [[B satisfies KVL ]] ⇒ [[so doesB′]]

◮ [[B satisfies KCL ]] ⇒ [[so doesB′]]

◮ [[B linear ]] ⇒ [[B′ linear ]]

◮ · · ·

An interconnection of resistors, inductors, capacitors,
connectors, transformers, gyrators, transistors, etc. has a
terminal behavior that satisfies KVL and KCL.
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Connection of mechanical terminals

Interconnection = connecting terminals, like screwing pins
together.

device
Mechanical

device
Mechanical

F1

F2

FN−1

FN−2

FN

Fk

F
−F q

q1

q2

qN−1

qN−2

qN

qk

Connecting terminalsN −1 and N leads to

qN−1 = qN, FN−1 +FN = 0.

After interconnection the terminals share the variables
qN−1,qN, and FN−1,FN (up to a sign).

– p. 28/77



Connection of mechanical terminals

device
Mechanical

device
Mechanical

F1

F2

FN−1

FN−2

FN

Fk

F
−F q

q1

q2

qN−1

qN−2

qN

qk

Connecting terminalsN −1 and N leads to

qN−1 = qN, FN−1 +FN = 0.

The interconnected circuit hasN −2 terminals. Its behavior =

B
′ = {(q1,F1,q2,F2, . . . ,qN−2,FN−2) : R → R

2(N−2)| ∃ q,F

such that (q1,F1,q2,F2, . . . ,qN−2,FN−2, q,F,q,−F ) ∈ B}.
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Preservation of properties under interconnection

◮ [[B satisfies IUM ]] ⇒ [[so doesB′]]

◮ [[B satisfies KVL ]] ⇒ [[so doesB′]]

◮ [[B linear ]] ⇒ [[B′ linear ]]

◮ · · ·

An interconnection of springs, dampers, and masses satisfies
IUM.
An interconnection of springs and dampers satisfies KFL.
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Energy transfer
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Energy

Energy := a physical quantity transformable into heat.
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Energy

Energy := a physical quantity transformable into heat.

For example capacitor→ resistor→ heat.

Energy on capacitor = 1
2CV 2
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Energy as an extensive quantity

Our intuition has been built to think of energy as an
extensive quantity, meaning that it is additive

E1 E2

Etotal = E1 +E2.
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Energy as an extensive quantity

Our intuition has been built to think of energy as an
extensive quantity,

EnvironmentSystem 1
System 2

Environment

that flows in and out and between systems
along the interconnected interfaces (terminals).
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Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive
quantity, that flows in and out and between systems along the
interconnected terminals).

Some methodologies for modeling interconnected systems,
as bond-graph modeling and port-Hamiltonian systems,
are based on this thinking.

Henry Paynter Arjan van der Schaft
– p. 34/77



Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive
quantity, that flows in and out and between systems along the
interconnected terminals).

‘Power is the universal currency of physical systems’

‘In physical systems, the interaction between subsystems
is always related to an exchange of energy’

P.J. Gawthrop and G.P. Bevan,Bond-graph modeling,
IEEE Control Systems Magazine, vol. 27, pp. 2445, 2007.
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Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and
energy in the form of heat are extensive quantities.
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Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and
energy in the form of heat are extensive quantities.

However, energy is more subtle for other forms.

Motion (kinetic) energy is not additive.
Same with energy due to gravitational attraction,
due Coulomb forces, etc.
Heat is a special, extensive, form of energy.

Energy and power are not a ‘local’ quantities.
They involve ‘action at a distance’.
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Ports
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Ports

Electrical
circuit

1
2

p

N-1

N

Terminals {1,2, . . . , p} form a port :⇔

(V1, . . . ,Vp,Vp+1, . . . ,VN , I1, . . . , Ip, Ip+1, . . . , IN) ∈ B

⇒ I1 + · · ·+ Ip = 0. ‘port KCL’ .

(KVL &) KCL ⇒ all terminals together form a port.
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Ports

Electrical
circuit

1
2

p

N-1

N

If terminals {1,2, . . . , p} form a port, then

power in along these terminals =V1(t)I1(t)+ · · ·+Vp(t)Ip(t),

energy in =
∫ t2

t1
(V1(t)I1(t)+ · · ·+Vp(t)Ip(t)) dt.

This interpretation in terms of power and energy is not valid
unless these terminals form a port !
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Dissipation into heat

Justification:

1

2

p

p−1
Electrical

circuit

unit transformer

unit transformer

unit transformer

Vp−V1
I1

Vp−V2
I2

Vp−Vp−1
Ip−1

Shows transformation
of power into heat.

Requires port KCL!
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Examples

2-terminal 1-port devices:

resistors, inductors, capacitors, transistors, memristors,
gyrators, connectors, etc.

any 2-terminal circuit composed of these.

Electrical Electrical
circuit circuit

V1

I1

V

I

V2

I2

+

-

1

2
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Examples

3-terminal 1-port devices:

transistors,Y ’s, ∆’s.

B

E

C
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Examples

4-terminal 2-port devices:

Transformers, gyrators.

1

2 4

3

V1−V2 = n(V3−V4) ,−nI1 = I3 I1 + I2 = 0, I3+ I4 = 0
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Examples

1

2

3

4

Terminals {1,2,3,4} form a port. But {1,2} and {3,4} do not.

– p. 43/77



Examples

1

2

3

4

Terminals {1,2,3,4} form a port. But {1,2} and {3,4} do not.

1

2

3

4

Terminals {1,2} and {3,4} form a port.
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Are ports common?

Theorem: Consider an electrical circuit consisting of an
interconnection of (linear passive) R’s, L’s, and C’s. If every
pair of terminals of the circuit graph is connected, then
the only port is the one that consists of all the terminals.
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Are ports common?

Corollary : Consider an electrical circuit consisting of an
interconnection of (linear passive) 2-terminal 1-port
impedances. If every pair of terminals of the circuit graph is
connected, then
the only port is the one that consists of all the terminals.
Follows from the theorem, combined with Bott-Duffin (every

positive real impedance can be viewed as an RLC circuit).In

order to have non-trivial ports, we need
2-port building blocks like transformers in the circuit.
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Independence

(V1, . . . ,Vp,Vp+1, . . . ,VN , I1, . . . , Ip, Ip+1, . . . , IN) ∈ B,α : R → R

⇒ (V1 +α , . . . ,Vp +α ,Vp+1, . . . ,VN , I1, . . . , Ip, Ip+1, . . . , IN) ∈ B.

‘port KVL’ For

linear passive circuits, there holds

port KVL ⇔ port KCL .

For energy: port KCL I1 + I2 + · · ·+ Ip = 0.
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Electrical circuit synthesis
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Synthesis question

Electrical
circuitV

I
+

-

Assume that the circuit consists of an interconnection certain
building blocks, say positiveR’s, L’s, C’s, T ’s, G’s, etc., or
combinations of these,

which external behaviors can occur ?

This was the prime theoretical electrical engineering question
until 1960.
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Synthesis question

Electrical
circuitV

I
+

-

LTIDS case; relation betweenV and I

d
(

d
dt

)
V = n

(
d
dt

)
I n,d ∈ R [ξ ] .

Which polynomial pairs (n,d) can occur?
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Positive realness

Introduce the ‘impedance’ Z :=
n
d

.
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Positive realness

Theorem: The following are equivalent

◮ Z is realizable using (positive, linear) R, L, & C’s
and transformers.

◮ Z is ‘positive real’,
i.e., [[Real(λ ) > 0]] ⇒ [[Real(Z(λ )) > 0]].

◮

∫ 0
−∞V (t)I(t)dt ≥ 0 ∀ compactly supported(V, I) ∈ B,

◮ · · ·

Otto Brune
1901-1982
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Positive realness

In 1949 Raoul Bott and Richard Duffin in a joint paper
dramatically improved Brune’s 1931 result.

Theorem: The following are equivalent

◮ Z is realizable using (positive, linear) R, L, & C’s
without transformers.

◮ Z is positive real,

◮ · · ·

Raoul Bott
1923-2005
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Positive realness

In 1949 Raoul Bott and Richard Duffin in a joint paper
dramatically improved Brune’s 1931 result.

Theorem: The following are equivalent

◮ Z is realizable using (positive, linear) R, L, & C’s
without transformers.

◮ Z is positive real,

◮ · · ·

Raoul Bott
1923-2005

Caveat: the n and d obtained in the
Bott-Duffin synthesis are NOT coprime!
; uncontrollable (V, I)-behavior.
; correct impedance, perhaps incorrect ODE.
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Mechanical ports
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The behavior

Mechanical
system

Mechanical
system

pins
1

2N

k

F1

F2
FN

Fk

q1 q2qN

qk

At each terminal: a position and a force .

; position/force trajectories (q,F) ∈ B ⊆ ((R•)2N)R.
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The behavior

Mechanical
system

Mechanical
system

pins
1

2N

k

F1

F2
FN

Fk

q1 q2qN

qk

At each terminal: a position and a force .

; position/force trajectories (q,F) ∈ B ⊆ ((R•)2N)R.

What is the analogue of a port?
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Port KFL

system
Mechanical

1
2

p

N −1

N

Terminals {1,2, . . . , p} form a (mechanical) port :⇔

(q1, . . . ,qp,qp+1, . . . ,qN,F1, . . . ,Fp,Fp+1, . . . ,FN) ∈ B,

⇒ F1 +F2 + · · ·+Fp = 0. ‘port KFL’
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Power and energy

If terminals {1,2, . . . , p} form a port, then

power in = F1(t)⊤ d
dt q1(t)+ · · ·+Fp(t)⊤ d

dt qp(t),

and

energy in =
∫ t2

t1

(
F1(t)

⊤ d
dt

q1(t)+ · · ·+Fp(t)
⊤ d

dt
qp(t)

)
dt.

This interpretation in terms of power and energy is not valid
unless these terminals form a port !
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Examples

Spring

L

F1 F2

F1 +F2 = 0, K(q1−q2) = F1 IUM and KFL
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Examples
Damper

F1 F2

q1

q2

F1 +F2 = 0, D
d
dt

(q1−q2) = F1. IUM and KFL

Springs and dampers, and the interconnection of springs and
dampers form ports.
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Examples

Mass

FORCE

q
MASS

M
d2

dt2q = F. IUM but not KFL

Not a port!!!
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Consequences

We discuss 2 consequences of the fact that a mass is not a port.

1. The inerter

2. Kinetic energy
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Mechanical synthesis
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Electrical and mechanical synthesis

What mechanical impedances are realizable using passive
mechanical devices (dampers, springs, and masses)?

Is it possible to use RLC synthesis to obtain mechanical
synthesis?
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Electrical and mechanical synthesis

system
SDM force F

position q

Relationship betweenF and q

d

(
d
dt

)
q = n

(
d
dt

)
F n,d real polynomials.

Z(ξ ) = ξ
n(ξ )

d(ξ )
positive real ???

Naive! The mass is NOT the mechanical analogue of a
capacitor.
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Electrical-mechanical analogies

voltage V ↔ v velocity current I ↔ F force

Resistor Damper
1
R(V1−V2) = I1, I1 + I2 = 0 D(v1− v2) = F1, F1 +F2 = 0

Inductor Spring
1
L(V1−V2) =

d
dt

I1, I1 + I2 = 0 K(v1− v2) =
d
dt

F1, F1 +F2 = 0

Capacitor Mass

C
d
dt

(V1−V2) = I1, I1 + I2 = 0 M
d
dt

v = F
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Electrical-mechanical analogies

voltage V ↔ v velocity current I ↔ F force

Resistor Damper
1
R(V1−V2) = I1, I1 + I2 = 0 D(v1− v2) = F1, F1 +F2 = 0

Inductor Spring
1
L(V1−V2) =

d
dt

I1, I1 + I2 = 0 K(v1− v2) =
d
dt

F1, F1 +F2 = 0

Capacitor Mass

C
d
dt

(V1−V2) = I1, I1 + I2 = 0 M
d
dt

v = F

The electrical analogue of a mass is a ‘grounded’ capacitor.

Electrical synthesis ; mechanical synthesis.
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The inerter

F1 F2

q1

q2

B d2

dt2(q1−q2) = F1, F1 +F2 = 0 IUM and KFL

Malcolm Smith
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Electrical-mechanical analogies

voltage V ↔ v velocity current I ↔ F force

Resistor Damper
1
R

(V1−V2) = I1, I1 + I2 = 0 D(v1− v2) = F1, F1 +F2 = 0

Inductor Spring
1
L
(V1−V2) =

d
dt

I1, I1 + I2 = 0 K(v1− v2) =
d
dt

F1, F1 +F2 = 0

Capacitor Inerter

C
d
dt

(V1−V2) = I1, I1 + I2 = 0 B
d
dt

(v1− v2) = F1, F1 +F2 = 0

electrical RLC synthesis ⇔ mechanical SDI synthesis

Springs, dampers, inerters, and their interconnections
form ports!
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The inerter in Formula 1

inerter

Kimi R äikk önen wins the 2005 Grand Prix in Spain with
McLaren’s ‘J-damper’, i.e., Smith’s inerter.
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MOTION ENERGY
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Back to the mass

FORCE

q
MASS

M
d2

dt2q = F ⇒
d
dt

1
2

M||
d
dt

q||2 = F⊤ d
dt

q

SinceF⊤v is not power,

is
1
2

M||
d
dt

q||2 not stored (kinetic, motion) energy???
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Kinetic energy and invariance under uniform motions

M

v

What is the kinetic energy?
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Kinetic energy and invariance under uniform motions

M

v

What is the kinetic energy?

Ekinetic =
1
2

M ||v||2

Willem ’s Gravesande Émilie du Châtelet
1688–1742 1706–1749

This expression is not invariant under uniform motion.
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Motion energy

M1

v1

M2

v2

What is the motion energy?

What quantity is transformable into heat?
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Motion energy

M1

v1

M2

v2

What is the motion energy?

What quantity is transformable into heat?

Emotion =
1
2

M1 M2

M1 +M2
||v1− v2||

2

Invariant under uniform motion.
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Dissipation into heat

Can be justified (see Exercise V.3) by mounting a damper or a
spring between the masses.

M1v1 M2 v2

1
2

M1 M2

M1+M2
||v1− v2||

2

is the heat dissipated in the damper.
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Motion energy

Generalization to N masses.

M1

M2

M3

MN−1
MN

v1

v2

v3

vN−1vN

Emotion =
1
4 ∑

i, j∈{1,2,...,N}

Mi M j

M1 +M2+ · · ·+MN
||vi − v j||

2
.

KFL ⇒
d
dt

Emotion = ∑
i∈{1,2,...,N}

F⊤
i vi.
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Motion energy

Motion energy is not an extensive quantity, it is not additive.

Total motion energy 6= sum of the parts.
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Motion energy

Emotion =
1
4 ∑

i, j∈{1,2,...,N}

Mi M j

M1 +M2+ · · ·+MN
||vi − v j||

2
.

Distinct from the classical expression of the kinetic energy,

Ekinetic =
1
2 ∑

i∈{1,2,...,N}

Mi ||vi||
2
.
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Motion energy

Reconciliation: MN+1 = ∞,FN+1 = −(F1 +F2 + · · ·+FN),

F1 F2
F3

FN

−(F1 +F2 + · · ·+FN)
M1

M2 M3

MN

q1

q2

q3

qN

measure velocities w.r.t. this infinite mass (‘ground’), then

1
4 ∑

i, j∈{1,2,...,N,N+1}

Mi M j

M1 +M2+ · · ·+MN +MN+1
||vi − v j||

2

−→
1
2 ∑

i∈{1,2,...,N}

Mi ||vi||
2
.
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PORTS and TERMINALS
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Energy transfer

circuit 1 circuit 2

circuit 1 circuit 2

circuit 3

One cannot speak about

“ the energy transferred from circuit 1 to circuit 2 ”
or “ from the environment to circuit 1 ”,

unless the relevant terminals form a port.

Analogously for mechanical systems, etc.
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Recapitulation
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Summary

◮ Energy transfer happens via ports,
hence it involves action at a distance.

◮ Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’.
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Summary

◮ Energy transfer happens via ports,
hence it involves action at a distance.

◮ Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’.

◮ Electrical ports :⇔ port KCL.

◮ Mechanical ports :⇔ port KFL.
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Summary

◮ Energy transfer happens via ports,
hence it involves action at a distance.

◮ Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’.

◮ Electrical ports :⇔ port KCL.

◮ Mechanical ports :⇔ port KFL.

◮ The mass is not the mechanical analogue of the capacitor.
⇒ the inerter.
⇒ a new expression for motion energy.

– p. 74/77



Summary

◮ Energy transfer happens via ports,
hence it involves action at a distance.

◮ Interconnection is ‘local’,
power and energy transfer involve ‘action at a distance’.

◮ Electrical ports :⇔ port KCL.

◮ Mechanical ports :⇔ port KFL.

◮ The mass is not the mechanical analogue of the capacitor.
⇒ the inerter.
⇒ a new expression for motion energy.

◮ Terminals are for interconnection,

ports are for energy transfer.
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End of Lecture V
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Reference: The behavioral approach to open and interconnected
systems,Control Systems Magazine, volume 27, pages 46-99, 2007.

This paper is available from/at
Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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Postscript

The behavioral approach to modeling physical and
interconnected systems has yet to find its influence in teaching
and research.
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Postscript

The behavioral approach to modeling physical and
interconnected systems has yet to find its influence in teaching
and research.

Ik zal de halmen niet meer zien
Noch binden ooit de volle schoven,
Maar doe mij in den oogst geloven

Waarvoor ik dien
A. Roland Holst, De ploeger

Adriaan Roland Holst
1888-1976
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